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A continuous random walk procedure is developed for solving some elliptic partial 
differential equations with constant coefftcients. The Monte Carlo method described here is 
exact (except possibly at the boundary) in the sense that the only error involved is the 
inherent statistical sampling error, that tends to zero as the sample size increases. 

INTRODUCTION 

Elliptic partial differential equations are commonly solved by making a finite- 
difference approximation for the derivatives, resulting in a system of linear equations 
to solve. It is well known [ 1, p. 483; 21 that these finite-difference equations can be 
solved by Monte Carlo techniques. However, there are two errors introduced in 
solving elliptic partial differential equations in this manner. First, there is the 
statistical sampling error inherent in any Monte Carlo calculation and second, there 
is the error introduced by the finite-difference approximation. Haji-Sheikh [3] showed 
that Laplace’s equation could be solved directly by Monte Carlo, without first 
introducing a finite-difference approximation; that is, the solves the d@2rential 
equation rather than the finite-difference equations. The only error made in the 
interior is the inherent statistical sampling error, that tends to zero as the sample size 
increases. 

Following Haji-Sheikh, I show how to solve some partial differential equations of 
the form: 

u,, + uyy - Au = 0, A constant. (1) 

This is an important class of partial differential equations because my elliptic partial 
differential equation with constant coefficients can be reduced, by suitable transfor- 
mations [ 1, p. 751, to the canonical form of Eq. (1). 

*This work was performed under the auspices of the U.S. Department of Energy. The U.S. 
Government’s right to retain a nonexclusive royalty-free licence in and to the copyright covering this 
paper, for governmental purposes, is acknowledged. 
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DIRICHLET PROBLEM 

We shall consider solving Eq. (l), with u specified on the boundary, by Monte 
Carlo. Equation (1) can be rewritten in polar coordinates as [4] 

1 1 
ur,+~%+--u,, r2 

-lu=O. 

Separating variables, 
u(r, 8) = R(r) o(e), 

results in two ordinary differential equations (separation constant /F), 

(3) 

(4) 

w(e) +/3%(B) = 0. 

The angular equation has solutions 

o(e) = uq cos /?tJ + b, sin /Ia, 

(5) 

(6) 

where a4 and b, are independent of 8. Requiring o(8) to be periodic in 2a, so that 
u(r, 0) be single valued, results in 

/3 = n = integer. (7) 

Thus the radial equation becomes 

R”(r) + + R’(r) + (-A - $) R(r) = 0. (8) 

This is Bessel’s equation with solutions Z,(lv2r) and K,(A1’2r). We require u(r, 0) to 
be finite \yhen r is zero, so we must throw out the K, solution because of a 
singularity at zero. Thus the solution to Eq. (2) is 

where 

u(r, 8) = aoZo(ar) + L F Z,(ar)(a, cos nB + b, sin ne). 
II=1 

a = A1/2. 

(9) 

Integrating Eq. (9) over 8 results in 

I 
2n 

u(r, 8) dt9 = 27caa,Zo(ar). 
0 

(10) 

(11) 
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Note that ~(0, 0) = u(0) is independent of 19 if u is to be single valued at r equal to 
zero. Setting r to zero in Eq. (11) and noting I,,(O) = 1 results in 

a, = u(0). (12) 

Substituting Eq. (12) into Eq. (11) yields 

or, changing variables to y = ia (for il < 0) 

1 1 *n 
u(O)=-- 

Jo(Y) 2n i 
24(r, e) de. 

0 

(13) 

(14) 

Inspecting Eq. (13) we see that u at the center of a circle of radius r is the average 
value of u on the circle multiplied by a factor l/l&r), depending only on the radius 
of the circle. Thus u at the center of a circle can be computed by randomly sampling 
u/Z,,(w) on the circle. In Monte Carlo parlance, we let a,#article take a random jump 
to any point P(8) on the circle, multiply the particle’s statistical weight by 
w = l/Z,(ar), and wu(P(B)) becomes one particle’s estimate of u(0). Averaging over a 
large number of one-particle estimates will give an accurate value for u(0). 

We shall now see how a more general boundary value problem can be solved with 
Monte Carlo, first intuitively and then more formally. Consider the closed and 
connected region D shown in Fig. 1 (u-specified on boundary 80, 
u,, t uyy - Au = 0 in D). Suppose that we wish the solution of Eq. (1) at a point P, 
and suppose that u is specified on the boundary ~30. To estimate u(P,), a point P, is 
sampled uniformly on the largest circle C, (centered on P,, radius ro) lying entirely 
within D, u(P,)/Z,,(ar,) is then one particle’s estimate of u(P,,). If P, lies “on” (within 
some small E of) 80, then u(P,) is known and u(P,)/Z,(ar,) is taken as one particle’s 
estimate of u(P,,). However, in general P, will not lie on aD, so that u(Pi) is not 
known; in this case, u(Pi) is estimated in the same fashion as u(P,). That is, a point 
P, is sampled uniformly on the largest circle C, (centered on P,, radius r,) lying 
within D; u(P,)/Z,(ar,) is then an estimate of @,) and hence, u(P,)/(Z,(ar,) Zo(arl)) 
is an estimate of u(P,,). If P, lies “on” 80, then u(PJ is known and 
u(P2)/(Zo(aro)Zo(ar,)) is one particle’s estimate of u(P,J. If P, does not lie “on” L3D, 

FIGURE 1 
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this procedure is repeated until the walk terminates “on” the boundary at the nth 
step, whereupon 

w”Y(r,@ro> *** Zo(ar,>) w 
is taken as one particle’s estimate of I@,). 

Now let us consider this boundary value problem in a more formal manner. We 
define a small parameter E > 0 such that if P is a point within E of the closest 
boundary point P*, then we take u(P) = u(P*).’ Thus using Eq. (13) yields 

u(P,) = H(E - r”)u(P:) + 
R(r, - E) 1 

- I 
*Jf 

Zobrn) 27l 0 de, W, + t 1, 
where 

H(x) = 0, if x < 0, 
= 1, if x & 0, 

R(x) = 0, if x f 0, 
= 1, if x > 0, 

p, = (x,3 Y,), 

P n+,=(~,+r,~~~e,,y,tr,sin8,), 

= r,(x,, y,) = distance to closest boundary point. 

Writing Eq. (16) for point P, yields 

06) 

Iqr,-&) 1 2n 
u(P& = H(E - r(J u(P;F) t 

Zo@o) z 0 I deoW,>, (17) 

and substituting Eq. (16) for u(P,) into Eq. (17) yields 

u(Po) = H(E - r&(Po*) t 
F&r, - E) 1 
z,(cfr,) 2n 0 5 

zndB 
O 

*Jr 
x 

[ 
H(E - rl)u(P:) + 

iqr, -&) 1 

Zo(arl) 2n o I d4@,) 3 
I 

(18) 

and substituting Eq. (16) for u(PJ into Eq. (18) yields 

Wo) = w - roMpa + 
A(r, - E) 1 2n 

z (are) 2;;1, de0 
0 

x 
[ 

*n 
H(E - rJu(P:) + &I -&) 1 

Z,(ar,) -SC o I 4 

I 

2n 
X H(E - r2)u(P$) t 

m2 -&) 1 
- 

i Zo(ar2) 27~ o 
de2v3) - II (19) 

’ This means that this method is not exact at the boundary, but only in the interior. 



400 THOMAS E.BOOTH 

Repetitively substituting yields 

u(PJ = H(& - rJ u(Po*) 

+ G F&r,-&) 1 - 
,il Zo(aro) 2~ 

1 
I 

*n d3 _ G(r,- , - E) 1 . . . - - 
2x 0 n * Z,(ar,- J 2n I 

2”ddn--IH(c - r,)u(P,*), (20) 
o 

provided the sum converges, a question treated later. 
Now let us investigate the random walk procedure described earlier. The 

probability, p(P, + P,, ,)dP,+ r of going from P, to dP,+ r about P,, , (see Fig. 2) is 

(21) 

and the probability of terminating at the nth step is H(E - r,). Thus the probability of 
the walk PO, P,, in dP,, P, in dP, ,..., P, in dP,, pX in dP,* is 

- de0 - d3, - 
H(ro - E) 2n HP, - El 2~ 

dB - 
-.a H(r,-, -c) 2n n H(E - r,). (22) 

The weight multiplier at the nth step is I/Zo(ar,) if the particle does not hit the 
boundary, and one if the particle hits the boundary. Thus the particle’s score upon 
hitting the boundary, for the given walk, is 

[Zo(aro)Zo(ar,) ..- ~o(ar,-I)l-‘Wf)~ (23) 

The mth moment of the score, S,, generated by a particle at PO is the integral, 
over all possible random walks, of the walk’s probability multiplied by the mth power 
of the walk’s score. Thus 

S, = H(E - r,)[u(P$)]” 

+ ng, j-r d&/F de, ..j;nd&-, 

Z7(r,-e) ri(rl -E) IQ,-, - -5) 
2a 2?t “. 2j.i H@ - r,> 1 

X [Vo@ro)Zo(ar,) e-e Zo(ar,-,)~-‘G31m, (24) 

FIGURE 2 
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where the first term is all random walks of zero steps and the rest of the terms are 
random walks of n steps. Comparing Eq. (24) with Eq. (20) yields (for m = 1) 

Mean Score = u(P,). (25) 

It is sufficient, though not necessary, that 3, > 0 (a real) for the sum in Eq. (24) to 
converge. To see this note that rk > E for all k < n, thus 
0 < Z;‘(ark) < Z,-‘(G) = q < 1 because Z,(x) is a positive increasing function of 1x1 
with a minimum value of 1. If 1 u(PX)I < M for all PX on aD then the sum converges 
absolutely because it is bounded by 

which converges because q < 1. For d < 0, a is imaginary and the I,, function 
becomes Jo. The convergence conditions for L < 0 have not been determined; there 
are cases where the sum converges and where it does not. The case for 1 complex has 
not been studied. 

INHOMOGENEOUS DIRICHLET PROBLEM 

Consider Eq. (2) with a constant source term 4, that is, 

1 1 
Urr+;Ur+--Uee r2 

-lu=q. 

An obvious particular solution to Eq. (26), for Iz # 0 is 

up = -q/l. (27) 

so that the general solution of Eq. (26) is, taking the homogeneous solution from 
Eq. (9), (recall a = Al/*) 

u(r, 0) = aoZo(ar) + f Z,(ar)(a, cos n0 + b, sin no) - q/A. 
It=1 

(28) 

Integrating Eq. (28) over 13 results in 

I 
296 

U(T, e) de = 2na,Z,(ar) - 27&l. (29) 
0 

Note that ~(0, 0) = u(0) is independent of 0 if u is to be single valued when r is zero. 
Setting r to zero in Eq. (29), and noting Z,(O) = 1 results in 

LIO = u(0) + q/A. (30) 
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Substituting Eq. (30) into Eq. (29) yields (for 1# 0) 

1 1 2n 
u(0) = -- 

how 271 I 
u(r, e) de + Q(r), 

o 
(31) 

where 

Q(r) = - (1 - l/~o(arNd~. (32) 

Thus U, at the center of a circle of radius r, is equal to Q(r), plus the average of 
u(r, 8)/1,(ar) on the circle. The only modification to the previous random walk 
procedure is that the particle now scores its weight times Q(r) at each step, in 
addition to scoring when the particle reaches the boundary. In other words, the 
integral of Eq. (31) is estimated by random sampling, as before, and an additional 
term, Q(r), is added. 

We now discuss the case when 1= 0 in Eq. (26), that is, Poisson’s equation. For 
this case a particular solution of Eq. (26) is 

up = + qr2/4, (33) 

and following the procedure in the preceding paragraph we obtain, for A = 0 (note 
that Eq. (34) is the limit as 1--f 0 of Eq. (3 1)) 

U(O) = 4 J@ u(r, 0) d8 - qr2/4. 
0 

(34) 

Haji-Sheikh also treats this case. 

COMMENTS ON BOUNDARY TREATMENT 

As noted earlier, the method is exact in the interior but approximate at the 
boundary because random walking on circles only allows the particle to get 
arbitrarily close to the boundary, instead of actually landing on the boundary. A 
circle was chosen only because the Green’s function for the boundary is quite simple, 
namely (2n10(ar))- l (see Eq. (13)) for every point on the circle. There is no 
fundamental reason why other shapes cannot be used; as long as the Green’s function 
for the shape is known, points can be selected at random on the shape. Thus for 
sampling near straight boundaries one could sample from a rectangle, 
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or perhaps a “chopped circle” 

Sampling from the Green’s function for either of these shapes produces a nonzero 
probability of landing on the boundary. Thus in principle it is possible to have an 
exact treatment where the particles actually terminate on, not just near, the boundary. 
This obviates approximating u(P,) by u(P~). I have not investigated alternate shapes 
but Troubetzkoy et al. [6] have used rectangles for solving the heat equation. 

APPLICATION TO HIGHER DIMENSIONS 

Although this paper has only treated two-dimensional domains there appears’ to be 
no reason the method should not be applicable, with suitable restrictions, to n- 
dimensional domains (Haji-Sheikh [3] solves Laplace’s equation in three 
dimensions). Courant and Hilbert [5] state that every solution of 

u XIX1 + * * ’ + uxnx, + Au = 0 

that is regular in the domain satisfies the mean value relation 

1 1 
u(O)=-- 

P(r) A II U& 
A 

where r is the radius of the n-dimensional sphere, A is the surface area of the n- 
dimensional sphere, and 

so that a point is sampled uniformly on a (n - 1)-dimensional sphere of area A 
(radius r) and multiplied by the leading weight factor. 

CONCLUSIONS 

This paper provides an alternative Monte Carlo method for the solution of some 
elliptic partial differential equations. For the class of problems [2] where Monte 
Carlo solution is preferred over direct solution of the finite-difference equations, the 
method described here offers two advantages. First, there is no error introduced by a 

2 I have not investigated this in depth. 
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finite-difference approximation and second, the boundary is usually reached with 
short random walks because the step size is always adjusted to be as large as 
possible. While only Dirichlet boundary conditions have been discussed here, Haji- 
Sheikh [3 ] discusses derivative boundary conditions as well. 
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